

Such a μ -1,2-peroxo structure is analogous to that crystallographically characterized for $[Co_2(BPMP)(OAc)(O_2)]^{2+15}$ and proposed for the species derived from reacting [Fe2(5-Me- $HXTA)(OAc)_2]^-$ with H_2O_2 .¹⁶ At present, the available data do not allow us to exclude a μ -1,1-peroxo structure, but ongoing resonance Raman and EXAFS studies should aid in distinguishing between these two possibilities.

Of the four diferrous models for the iron-oxo proteins, 1 is the only complex that has been shown to bind O_2 . The availability of exogenous ligand coordination sites on both iron atoms in 1 may be an important factor in promoting dioxygen binding. 1 may thus serve as a model for RRB2, in as much as RRB2 has recently been shown to have a $(\mu - 0x0)(\mu - carboxylato)diiron(III)$ core.¹⁷ We are currently investigating the reactivity of the $1-O_2$ adduct when it decomposes at higher temperatures.

Acknowledgment. This work was supported by National Institutes of Health Grants (GM-38767, L.Q.; GM22701, E.M.). We are grateful to Professor J. D. Britton for his expertise in the X-ray diffraction experiments.

Supplementary Material Available: Tables of atomic coordinates, thermal parameters, bond lengths, and bond angles for [Fe₂(N-Et-HPTB)(OBz)](BF₄)₂ (32 pages). Ordering information is given on any current masthead page.

(15) Suzuki, M.; Ueda, I.; Kanatomi, N.; Murase, I. Chem. Lett. 1983, 185-188.

(16) Murch, B. P.; Bradley, F. C.; Que, L., Jr. J. Am. Chem. Soc. 1986, 108, 5027-5028. (17) Nordlund, P.; Sjöberg, B.-M.; Eklund, H. Nature 1990, 345, 593-598.

Reactivity of Neutral Fe, Co, Ni, and Cu Atoms with Linear Alkanes and Alkenes in the Gas Phase¹

David Ritter and James C. Weisshaar*

Department of Chemistry University of Wisconsin-Madison Madison, Wisconsin 53706 Received May 17, 1990 Revised Manuscript Received June 26, 1990

We explore the reactivity of gas-phase, neutral 3d-series transition-metal atoms (M) with hydrocarbons. While certain transition-metal cations (M^+) are aggressive chemicals that ac-tivate C-H and C-C bonds of alkanes,^{2,3} the gas-phase chemistry of neutral transition-metal atoms remains virtually unexplored.4,5

(3) Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem. 1988, 92, 92. (3) Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem. 1988, 92, 92.
(4) Previous studies of neutral M chemistry include: Gole, J. L.; Preuss, D. R. J. Chem. Phys. 1977, 66, 3000-3011. Chalek, C. L.; Gole, J. L. Chem. Phys. 1977, 65, 990. Chalek, C. L.; Gole, J. L. J. Chem. Phys. 1977, 65, 2845-2859. Gole, J. L.; Pace, S. A. J. Chem. Phys. 1980, 73, 836-850. Liu, K.; Parson, J. M. J. Chem. Phys. 1977, 67, 1814-1828. Liu, K.; Parson, J. M. J. Chem. Phys. 1977, 67, 1814-1828. Liu, K.; Parson, J. M. J. Chem. Phys. 1974, 1802. Parson, J. M.; Gieger, L. C.; Conway, T. J. J. Chem. Phys. Chem. submitted for publication. Vinckler. S. A.; Hackett, P. A. J. Phys. Chem., submitted for publication. Vinckier, C.; Corthouts, J.; DeJaegere, S. J. Chem. Soc., Faraday Trans. 1988, 84, 1951-1960.

Cryogenic matrix isolation spectroscopy⁶⁻⁸ and ab initio electronic structure calculations⁹⁻¹¹ on neutral metal atom complexes $M-C_2H_4$ provide another context for this work.

A hollow cathode discharge produces neutral metal atoms in a fast-flow reactor with He buffer gas. Laser-induced fluorescence (LIF) provides state-specific detection of the metal atom number density. From the linear decay of ln [M] vs hydrocarbon number density, we extract effective bimolecular rate constants⁵ at 300 K in 0.8 Torr He. We studied the reactivity of Fe(d⁶s²,⁵D), $Co(d^{7}s^{2}, {}^{4}F)$, $Ni(d^{8}s^{2}, {}^{3}F)$, $Ni(d^{9}s, {}^{3}D)$, and $Cu(d^{10}s, {}^{2}S)$ with the linear hydrocarbons propane, n-butane, ethene, propene, and 1-butene. In comparison with the corresponding cations, these neutral atoms are remarkably inert. We observe no reactions with propane or *n*-butane to our detection limit (implying $k < 10^{-14}$ $cm^{3} \cdot s^{-1}$). With the exception of Co + 1-butene, which is very slow $(k = 9 \times 10^{-14} \text{ cm}^3 \text{ s}^{-1})$, Fe, Co, and Cu show no reaction with ethene, propene, or 1-butene.

In striking contrast, Ni reacts slowly with ethene $(5.0 \times 10^{-13}$ cm³·s⁻¹), moderately with propene- h_6 (1.1 × 10⁻¹¹ cm³·s⁻¹) and with propene- d_6 (2.1 × 10⁻¹¹ cm³·s⁻¹), and rapidly with 1-butene $(1.4 \times 10^{-10} \text{ cm}^3 \cdot \text{s}^{-1})$. Rate constants are accurate to ±25% and precise to $\pm 10\%$. The two low-energy terms¹² of Ni (d⁸s², ³F and d⁹s,³D) exhibit identical kinetics, suggesting rapid collisional interconversion in He. Ni reacts with C2H4 in 1 of 500 hard-spheres collisions, with C_3H_6 in 1 of 25 collisions, and with 1-butene in 1 of 2 collisions.¹³

Termolecular stabilization of Ni-alkene complexes probably dominates the measured rate constants, although a contribution from bimolecular H₂ or CH₄ elimination reactions (analogous to single-collision M⁺ chemistry)^{2,3} is possible. H-atom abstraction by Ni is highly endothermic and therefore ruled out. The rapid increase of the Ni + alkene rate constant with alkene size is consistent with a statistical model¹⁴ of hot [Ni(alkene)]* complex lifetimes. The observed inverse isotope effect for the Ni + propene reaction, $k(C_3D_6) = 2k(C_3H_6)$, also points to termolecular sta-

(5) (a) Ritter, D.; Weisshaar, J. C. J. Phys. Chem. 1989, 93, 1576-1581. (b) Ritter, D.; Weisshaar, J. C. J. Phys. Chem. 1990, 94, 4907-4913

(6) (a) For general reviews of matrix isolation spectroscopy, see: Ozin, (6) (a) For general reviews of matrix isolation spectroscopy, see: Ozin, Vander Voet, A. Prog. Inorg. Chem. 1975, 19, 105-172. Ozin, G. A. Acc. Chem. Res. 1977, 10, 21-26. Ball, D. W.; Kafafi, Z. K.; Fredin, L.; Hauge, R. A Bibliography of Matrix Isolation Spectroscopy: 1954-1985; Rice University Press: Houston, TX, 1988. (b) For work on Fe, see: Peake, D. A.; Gross, M. L. Organometallics 1986, 5, 1236-1243. Kafafi, Z. H.; Hauge, R. H.; Margrave, J. L. J. Am. Chem. Soc. 1985, 107, 7550-7559. Parker, S. F.; Peden, C. H.; Barrett, P. H.; Pearson, R. G. Inorg. Chem. 1983, 22, 2813-2818. Barrett, P. H.; Pasternak, M.; Pearson, R. P. J. Am. Chem. Soc. 1979, 101, 222-223. (c) For work on Co, see: Lee Hanlan, A. J.; Ozin, G. A.; Power, W. J. Inorg. Chem. 1978, 17, 3648-3657.
(7) For work on Ni. see: Ozin, G. A.; Power, W. J. Ber. Bunsenees, Phys.

 (7) For work on Ni, see: Ozin, G. A.; Power, W. J. Ber. Bunsenges. Phys. Chem. 1978, 82, 105–106. Ozin, G. A.; Power, W. J. Inorg. Chem. 1978, 17, 2836–2842. Ozin, G. A.; Power, W. J. Inorg. Chem. 1977, 16, 2864–2871.
 Huber, H.; Ozin, G. A.; Power, W. J. J. Am. Chem. Soc. 1976, 98, 1000 6508-6511.

(8) For work on Cu, see: Merle-Mejan, T.; Bouchareb, S.; Tranquille, M. (8) For work on Cu, see: Merle-Mejan, 1.; Bouchareb, S.; Iranquille, M.
J. Phys. Chem. 1989, 93, 1197-1203. McIntosh, D. F.; Ozin, G. A.; Messmer, R. P. Inorg. Chem. 1980, 19, 3321-3327. Kasai, P. H.; McLeod, D.; Wa-tanabe, T. J. Am. Chem. Soc. 1980, 102, 179-190. Ozin, G. A.; Huber, H.; McIntosh, D. Inorg. Chem. 1977, 16, 3070-3078. Huber, H.; McIntosh, D.; Ozin, G. A. J. Organomet. Chem. 1976, 112, C50-C54. Grinter, R.; Stotesbury, S. J. J. Mol. Struct. 1982, 80, 125-128.
(9) Early NiC₂H₄: Ozin, G. A.; Power, W. J.; Upton, T. H.; Goddard, W.
A. H. Law. Chem. Soc. 1978, 100, 4750-4759.

(9) Early NiC₂H₄: Ozin, G. A.; Power, W. J.; Upton, T. H.; Goddard, W. A., III J. Am. Chem. Soc. 1978, 100, 4750-4759. (10) (a) FeC₂H₄ calculations: Widmark, P.-O.; Roos, B. O. Theor. Chim. Acta 1989, 76, 33-46. (b) NiC₂H₄ calculations: Widmark, P.-O.; Roos, B. O.; Siegbahn, P. E. M. J. Phys. Chem. 1985, 89, 2180-2186. Siegbahn, P. E. M.; Brandemark, U. B. Theor. Chim. Acta 1986, 69, 119-133. (11) CuC₂H₄ calculations: Nicholas, G.; Barthelat, J. C. J. Phys. Chem. 1986, 90, 2870-2877. (12) Ni(d⁸s,³)F) is the ground state; Ni(d⁹s,³D) lies at 0.59 kcal/mol; Ni(d⁹s,¹D) lies at 9.7 kcal/mol. Moore, C. E. Natl. Bur. Stand. Circ. (U.S.) 1949, No. 467 (Vol. 1).

1949, No. 467 (Vol. 1).

1949, No. 467 (Vol. 1). (13) We use estimated hard-sphere diameters of 3.44 Å for Fe, 3.34 Å for Co, 3.24 Å for Ni, 3.14 Å for Cu, 4.23 Å for C_2H_4 , and 5.0 Å for C_3H_6 and C_4H_8 . Atomic estimates from: Fischer, C. F. The Hartree Fock Method for Atoms; Wiley: New York, 1977. Molecular estimates from: Hirschfelder, J.; Curtiss, C.; Bird, R. B. Molecular Theory of Liquids and Gases; Wiley: New York, 1954. Hard-spheres rate constants estimated as $k_{hs} = \frac{1}{4\pi}(d_1 + d_2)^2\langle v \rangle$, where $\langle v \rangle$ is the mean relative velocity at 300 K. (14) Pechukas, P.; Light, J. C.; Rankin, C. J. Chem. Phys. 1966, 44, 794. Chesnavich, W. J.: Bowers, M. T. J. Chem. Phys. 1978, 68, 901.

Chesnavich, W. J.; Bowers, M. T. J. Chem. Phys. 1978, 68, 901.

⁽¹⁾ We thank the NSF (CHE-8703076 and its renewal) and the Donors of the Petroleum Research Fund, administered by the American Chemical Society, for generous support of this research.

⁽²⁾ For recent reviews of M⁺ chemistry, see: Armentrout, P. B. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum: New York, 1989; pp 1-42. Buckner, S. W.; Freiser, B. S. In Gas Phase Inorganic Chemistry; Pp 1-42. Buckner, S. w., Freiser, B. S. In Oas Phase Integratic Chemistry, Russell, D. H., Ed.; Plenum: New York, 1989; pp 279–322. Ridge, D. P.; Meckstroth, W. K. In Gas Phase Integratic Chemistry; Russell, D. H., Ed.; Plenum: New York, 1989; pp 93–113. Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315. Allison, J. Prog. Integr. Chem. 1986, 34, 022 (32). 627-676.

bilization. The density of vibrational states of the deuterated complex will be larger, while the Ni-C₃H₆ and Ni-C₃D₆ bond energies will be very similar, so we would expect longer lifetimes (and greater stabilization efficiency) for the $Ni + C_3D_6$ reaction in a termolecular mechanism.

In an attempt to clarify the nature of the Ni + alkene products, we gently focused excimer laser pulses at 308 and 248 nm (two-photon energy of 8.1 and 10.0 eV) downstream in the flow tube and analyzed the resulting cations in a quadrupole mass spectrometer. The only photoion observed is Ni⁺. It is plausible that collisionally stabilized, π -bonded Ni-alkene complexes photodissociate to Ni + alkene and that subsequent two-photon ionization of Ni produces the observed Ni⁺.

The ground-state configurations¹² of Fe, Co, and Ni are 3d^{#-2}4s². The 4s² occupancy and the large spatial extent of 4s relative to 3d give these atoms closed-shell character at long range. Accordingly, ab initio calculations^{10,11} find that $M(d^{n-2}s^2) + C_2H_4$ asymptotes produce only repulsive potentials. Substantial M-C₂H₄ binding arises only from excited-state d^{#-1}s asymptotes. In Fe, Co, and Ni, the lowest energy high-spin dⁿ⁻¹s levels lie at excitation energies of 20, 10, and 0.6 kcal/mol, respectively. The lowest energy low-spin dⁿ⁻¹s levels lie at 34, 21, and 10 kcal/mol.¹²

The challenge for dⁿ⁻²s² reactants is to reach sufficiently short M-alkene approach distances to access attractive dⁿ⁻¹s potential surfaces before deflecting off the repulsive wall of the $d^{n-2}s^2$ surface. The attractive surfaces will often have different spin multiplicity from the reactants.^{10,15} The avoided intersection between the repulsive dⁿ⁻²s² surface and the attractive dⁿ⁻¹s surface can produce a barrier on the lowest energy adiabatic surface whose height should be roughly proportional to the atomic excitation energy from $d^{n-2}s^2$ to $d^{n-1}s$. Thus the strength of M-alkene binding and the energy of the surface intersections combine to determine the gas-phase reactivity.

Measurement of gas-phase rate constants at 300 K with well-defined initial metal atom states can provide quantitative experimental insights into gas-phase M-alkene interactions. Assuming Arrhenius behavior $k(T) = k_{\rm hs} \exp(-E/k_{\rm B}T)$ with preexponential factor equal to the hard-spheres collision rate k_{hs} (the largest plausible value),¹³ we can convert the measured reaction probabilities $P = k(300 \text{ K})/k_{\text{hs}}$ to upper bounds E_{max} on the activation energy E using the equation $E_{\text{max}} = -k_{\text{B}}T \ln P$.^{5b} In addition, those reactions that occur at measurable rate exhibit exponential decay of the M reactant over at least one decade. In the termolecular stabilization mechanism, this implies at least 10-15 kcal/mol of M-alkene binding energy relative to groundstate reactants, depending on the entropy change at 300 K and on the alkene number density required to effect the 10-fold decay of M atom density.³ No reaction ($k < 10^{-14} \text{ cm}^3 \text{ s}^{-1}$) implies either an activation energy in excess of 6 kcal/mol or a M-alkene binding energy less than 10-15 kcal/mol relative to ground-state reactants, or both.

Since Fe and Co ground states are unreactive, we conclude that they never reach the potential wells arising from $d^{n-1}s$ asymptotes or that the wells are not sufficiently deep. This is consistent with the minor shifts between vibrational frequencies of C_2H_4 and FeC₂H₄ in matrix IR spectra^{6b} and with ab initio calculations^{10a} that find a bound Fe-C₂H₄ complex lying 6 kcal/mol *above* $Fe(d^{6}s^{2}, {}^{5}D) + C_{2}H_{4}$. Since the Cu(d¹⁰s, 2) ground state is well isolated from excited states, we expect no surface intersections (no potential barrier) for Cu + alkene. The absence of measurable Cu + alkene reaction implies binding energies less than 10-15 kcal/mol, consistent with a recent calculated Cu-C₂H₄ binding

energy of 8 kcal/mol obtained with core pseudopotentials.¹¹ NiC₂H₄ is observed in cryogenic matrices;⁷ the C₂H₄ vibrational frequencies are more strongly perturbed in NiC_2H_4 than in FeC_2H_4 . Only the repulsive Ni-C₂H₄ surfaces arise from the Ni(d⁸s²,³F) ground state. Early ab initio work⁹ found a triplet NiC_2H_4 ground state (³A₁) from Ni(d⁹s,³D). Recent calculations^{10b} with more extensive basis sets find the same triplet surface to be repulsive. Ni(d^9s , ¹D) + C₂H₄ gives an attractive singlet surface (¹A₁) bound by 10 kcal/mol relative to ground-state Ni $+ C_2 H_4^{12}$

The observed extent of the $Ni(d^9s, ^3D)$ + alkene reactions indicates Ni-alkene binding energies in excess of 10-15 kcal/mol, consistent with the recent Ni-C₂H₄ calculations.^{10b} Apparently $Ni(d^9s, ^3D) + C_2H_4$ collisions at 300 K readily access the 1A_1 potential well. The reaction efficiencies indicate very small barriers on the *adiabatic* surface which has ${}^{3}A_{1}$ character at long range and ${}^{1}A_{1}$ character at short range. Reaction probabilities of ${}^{1}/{}_{500}$ for Ni + ethene, 1/25 for Ni + propene, and 1/2 for Ni + 1-butene imply activation energies *not larger than* 3.5, 1.9, and 0.4 kcal/mol, respectively. For Ni + C_2H_4 , the calculations^{10b} find the crossing point between the ${}^{3}A_{1}$ surface and the ${}^{1}A_{1}$ surface to lie ~ 8 kcal/mol above Ni(d⁹s,³D) + C₂H₄, which is probably an overestimate.

Room Temperature Generation of Reactive Intermediates Cp*₂Zr=O and Cp*₂Zr=S: Trapping **Reactions with Unsaturated Organic Molecules and Dative Ligands**

Michael J. Carney, Patrick J. Walsh, and Robert G. Bergman*

> Department of Chemistry, University of California Berkeley, California 94720 Received April 13, 1990

We provided evidence recently that the reactive intermediate [Cp*₂Zr=O] is generated at 160 °C by α -elimination of benzene from Cp*₂Zr(Ph)(OH).^{1,2} The oxo intermediate reacts with selected alkynes, but at this elevated temperature the materials isolated presumably result from rearrangement of the initially formed alkyne addition products. We now report a novel room-temperature route to $[Cp_2^*Zr=0]$.³ This reaction allows isolation of oxametallacycles that result from initial reaction of the oxo complex with alkynes and provides a means of utilizing alkyl- as well as aryl-substituted acetylenes in the reaction. In addition, we have found a mild route to the analogous sulfido complex [Cp*₂Zr=S]. Like its oxo analogue, this material undergoes cycloaddition reactions with alkynes and nitriles; in this case, we have also been able to trap the reactive species with dative ligands.

Treatment of $Cp_2^{*}Zr(OH)(Cl)$ (1)⁴ with 1 equiv of AgOS-O₂CF₃ produces $Cp_2^{*}Zr(OH)(OSO_2CF_3)$ (2) in nearly quanti-tative yield by ¹H NMR (Scheme I).⁵ Deprotonation of 2 with the hindered base KN(Si(CH₃)₃)₂ leads to the successful generation of [Cp*2Zr=0] as judged by its subsequent trapping with various alkynes and nitriles. A critical example involves diphenylacetylene. The metallacycle complex 3a was prepared recently by Hillhouse upon treatment of the zirconocene diphenylacetylene complex $Cp_2^*Zr(PhCCPh)$ with $N_2O_6^6$ We were

(4) (a) Hillhouse, G. L.; Bercaw, J. E. J. Am. Chem. Soc. 1984, 106, 5472. (b) Bortolin, R.; Patel, V.; Munday, I.; Taylor, N. J.; Carty, A. J. J. Chem. Soc., Chem. Commun. 1985, 456.

(5) Spectroscopic and analytical data on the new compounds described here

are provided as supplementary information. (6) Vaughan, G. A.; Sofield, C. D.; Hillhouse, G. L.; Rheingold, A. L. J. Am. Chem. Soc. 1989, 111, 5491.

⁽¹⁵⁾ Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Chem. Phys. 1990, 92, 3498.

⁽¹⁾ Carney, M. J.; Walsh, P. J.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 8751.

<sup>Chem. Soc. 1989, 111, 8751.
(2) For studies on the chemistry of related reactive complexes with metal-X multiple bonds, see: (a) Klein, D. P.; Bergman, R. G. J. Am. Chem. Soc. 1989, 111, 3079. (b) Glueck, D. S.; Hollander, F. J.; Bergman, R. G. J. Am. Chem. Soc. 1988, 110, 8729. (d) Cummins, C. C.; Baxter, S. M.; Wolczanski, P. T. J. Am. Chem. Soc. 1988, 110, 8731.
(3) For excellent reviews on the synthesis and chemistry of oxo complexes, see: (a) Nugent, W. A.; Mayer, J. A. Metal-Ligand Multiple Bonds; Wiley-Interscience: New York, 1988. (b) Holm, R. H. Chem. Rev. 1987, 87, 1401 and references therein.</sup>

¹⁴⁰¹ and references therein